Product Description

SC Transmission Cast Iron MH Flexible Quick Shaft Coupling
Plum Elastic Claw Coupling 

SC provides a variety of couplings: chain coupling,Jaw coupling, flexible coupling,HRC couplings,NM coupling,MH coupling,Pin coupling, space coupling, flange coupling,sleeve coupling, nylon sleeve couplings.


Product Description

MH coupling

1. Made of high grade cast iron.

2. NBR rubber material: excellent oil resistance, similar to TM, ACM and fluororubber.

Good wear resistance, heat resistance, aging resistance and air tightness.

Basic acid-base resistance.

3. Working temperature: – 40 ~ + 120 ºC

MH super flexible rubber couplings are precisely produced by a special designed synthetic rubber with 2 similar bodies of cast iron
Cast iron flange:
Designed not only for the power transmission but also for protection of flexible rubber
Flexible rubber:
Made of rubber and steel cores are inserted in the teeth so as to provide excellent durability and performance of coupling.

Pumps, fans, compressors, vehicles, transporting equipments, constructors, cement mixers, tractors, transmission machines, metal working machines, rollers, and other transmissions.
Economical and practical using
Quiet and smoothly operation
Easy installation and maintenance
Available to machines with high torque and intermittent operation


Product Parameters




Type Out dia. Hub Bore size Rated misalignment Max speed L K H t I E Weight
A B Min Max Stock torque parellel angular (rpm) 0 to +0.1
MH 55 55 38 9 20 7 0.4 0.2 0.3 6000 57 27 17 3 15 26 0.6
MH 65 65 45 12 25 8 0.7 0.2 0.3 6000 63 30 19 3 16 33 0.9
MH 80 80 52 16 30 10 1.6 0.2 0.3 5500 73 35 23 3 18 41 1.5
MH 90 90 62 20 35 12 3.7 0.2 0.3 5000 83 40 25 3 21 46 2.2
MH 115 115 80 25 45 12 8 0.2 0.3 4600 113 55 33 3 29 58 5
MH 130 130 90 27 50 12 12 0.2 0.3 4400 123 60 37 3 32 65 7
MH 145 145 100 30 55 12 20 0.2 0.3 4200 133 65 39 3 35 72 9.2
MH 175 175 115 35 65 16 43 0.2 0.3 3800 163 80 47 3 43 84 16.1
MH 200 200 130 50 80 20 65 0.2 0.3 3600 223 110 53 3 69 92 35.5
MH 230 230 150 20 85 20 / 0.2 0.3 / 233 115 56 3 65 110 42


Company Profile



/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Material: 45# Steel
Transport Package: Plywood Case
Origin: China
US$ 10/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

China Best Sales Cast Iron Mh Flexible Quick Shaft Coupling Plum Elastic Claw Coupling

mh coupling

Can flexible couplings handle misalignment between shafts?

Yes, flexible couplings are specifically designed to handle misalignment between shafts in rotating machinery and mechanical systems. Misalignment can occur due to various factors, including installation errors, thermal expansion, manufacturing tolerances, or shaft deflection during operation.

Flexible couplings offer the ability to compensate for different types of misalignment, including:

  • Angular Misalignment: When the shafts are not collinear and have an angular offset, flexible couplings can accommodate this misalignment by flexing or twisting, allowing the two shafts to remain connected while transmitting torque smoothly.
  • Parallel Misalignment: Parallel misalignment occurs when the two shafts are not perfectly aligned along their axes. Flexible couplings can adjust to this misalignment, ensuring that the shafts remain connected and capable of transmitting power efficiently.
  • Axial Misalignment: Axial misalignment, also known as end float or axial displacement, refers to the relative axial movement of the two shafts. Some flexible coupling designs can accommodate axial misalignment, allowing for slight axial movements without disengaging the coupling.

The ability of flexible couplings to handle misalignment is essential in preventing premature wear and failure of the connected equipment. By compensating for misalignment, flexible couplings reduce the stress on the shafts, bearings, and seals, extending the service life of these components and improving overall system reliability.

It is crucial to select the appropriate type of flexible coupling based on the specific misalignment requirements of the application. Different coupling designs offer varying degrees of misalignment compensation, and the choice depends on factors such as the magnitude and type of misalignment, the torque requirements, and the operating environment.

In summary, flexible couplings play a vital role in handling misalignment between shafts, ensuring efficient power transmission and protecting mechanical systems from the adverse effects of misalignment. Their ability to accommodate misalignment makes them indispensable components in various industrial, automotive, aerospace, and marine applications.

mh coupling

How does a flexible coupling affect the noise and vibration levels in a mechanical system?

A flexible coupling plays a crucial role in controlling noise and vibration levels in a mechanical system. It can significantly impact the overall smoothness and quietness of the system’s operation, contributing to enhanced performance and reduced wear on connected components.

Noise Reduction:

Flexible couplings help reduce noise in a mechanical system through their inherent ability to dampen vibrations. When the shafts of rotating machinery are not perfectly aligned, it can lead to vibrations that are transmitted throughout the system, resulting in noise generation. The elastomeric or flexible element of the coupling acts as a vibration dampener, absorbing and dissipating these vibrations. As a result, the noise levels in the system are reduced, creating a quieter operating environment.

Vibration Damping:

Vibrations in a mechanical system can lead to increased wear and tear on critical components, such as bearings, seals, and gears. Excessive vibrations can also cause resonance and damage to the system over time. Flexible couplings can effectively dampen vibrations by acting as a buffer between the driving and driven shafts. The flexible element absorbs the shock and vibrations, preventing them from propagating to other parts of the system. This vibration damping capability not only reduces noise but also protects the system from potential mechanical failures, extending the lifespan of the equipment.

Alignment Compensation:

Misalignment between shafts is a common cause of vibration and noise in rotating machinery. Flexible couplings excel at compensating for both angular and parallel misalignment. By accommodating misalignment, the coupling reduces the forces acting on the shafts and minimizes the generation of vibrations and noise. Proper alignment through the use of a flexible coupling ensures that the system operates smoothly and quietly.

Effect on Equipment Reliability:

Reducing noise and vibration levels has a positive impact on the reliability of connected equipment. Lower vibrations mean less stress on bearings and other rotating components, leading to extended component life and reduced maintenance requirements. A quieter operating environment can also be essential for certain applications, such as in laboratories or precision manufacturing processes, where excessive noise can interfere with delicate tasks or measurements.


Flexible couplings find application in a wide range of industries, such as manufacturing, power generation, material handling, automotive, aerospace, and robotics. They are commonly used in pumps, compressors, fans, conveyors, and other rotating machinery where noise and vibration control are critical for smooth and reliable operation.


A flexible coupling’s ability to reduce noise and dampen vibrations makes it an essential component in mechanical systems. By compensating for misalignment and providing vibration dampening properties, the flexible coupling enhances the overall system performance, reduces noise levels, and protects connected equipment from excessive wear and mechanical failures. Choosing the right type of flexible coupling based on the specific application requirements can have a significant impact on noise reduction and vibration control in the mechanical system.

mh coupling

What materials are commonly used in manufacturing flexible couplings?

Flexible couplings are manufactured using a variety of materials, each offering different properties and characteristics suited for specific applications. The choice of material depends on factors such as the application’s requirements, environmental conditions, torque capacity, and desired flexibility. Here are some of the commonly used materials in manufacturing flexible couplings:

  • Steel: Steel is a widely used material in flexible couplings due to its strength, durability, and excellent torque transmission capabilities. Steel couplings are suitable for heavy-duty industrial applications with high torque requirements and harsh operating conditions.
  • Stainless Steel: Stainless steel is often used to manufacture flexible couplings in environments with high corrosion potential. Stainless steel couplings offer excellent resistance to rust and other corrosive elements, making them ideal for marine, food processing, and chemical industry applications.
  • Aluminum: Aluminum couplings are lightweight, have low inertia, and provide excellent balance. They are commonly used in applications where reducing weight is critical, such as aerospace and robotics.
  • Brass: Brass couplings are known for their electrical conductivity and are used in applications where electrical grounding or electrical isolation is required, such as in certain industrial machinery or electronics equipment.
  • Cast Iron: Cast iron couplings offer good strength and durability and are often used in industrial applications where resistance to shock loads and vibrations is necessary.
  • Plastic/Polymer: Some flexible couplings use high-performance polymers or plastics, such as polyurethane or nylon. These materials provide good flexibility, low friction, and resistance to chemicals. Plastic couplings are suitable for applications where corrosion resistance and lightweight are essential.
  • Elastomers: Elastomers are used as the flexible elements in many flexible couplings. Materials like natural rubber, neoprene, or urethane are commonly used as elastomer spider elements, providing flexibility and vibration damping properties.

The selection of the coupling material depends on the specific needs of the application. For instance, high-performance and heavy-duty applications may require steel or stainless steel couplings for their robustness, while applications where weight reduction is crucial may benefit from aluminum or polymer couplings. Additionally, the choice of material is influenced by factors such as temperature range, chemical exposure, and electrical requirements in the application’s operating environment.

Manufacturers typically provide material specifications for their couplings, helping users make informed decisions based on the specific demands of their applications.

China Best Sales Cast Iron Mh Flexible Quick Shaft Coupling Plum Elastic Claw Coupling  China Best Sales Cast Iron Mh Flexible Quick Shaft Coupling Plum Elastic Claw Coupling
editor by CX 2024-02-15